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For many problems of interest in statistical patt ern

recognition, density estimates for a random variable X of

dimens ion  d are un re l i ab le  unless the number of sample

vec tors is very large (>z d). For even moderately larg e d

(d > 12), sample sizes are often insufficient. However, lower

order moments of the form x? x~
’ may he accurately estimated .

In this paper we are concerned with the problem of optimally

discr imina ting between two classes of random variabl es in

terms of the availab le informa tion about them of reasonable

accuracy (their lower order moments). In no case do we

make any assumption about the form of the probability den-

sities of random variables X. (We do in some cases assume

certain forms for the densities of functions of these ran-

dom variables L(X).)

First we consider the performance of the Gaussian dis-

criminan t function for arbitrary class distribu tions . How

well this func tion discrimina tes depends on the magnitudes

of the interclass differences of the first four mom ents.

It is shown how to adjust the constant term of the Gaussian

discr iminant to ob tain m inimum probab ili ty of error. Then

a second order solution for the optimal quadra ti c discr im i-

nant is given. Finally the methods developed are applied

to determine general discriminant functions.
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I . INTRODUCTION
Suppose two classes of events are mu tually exclusive and

exhaustive. Let these classes be denoted by w1 and and
their respective probabilities by P(~ 1) and P(~ 2). Suppose
fur ther that each event has associa ted wi th it a vec tor X in

This vector contains the only observable information

about the event. We then have a random variable defined on

e.~tch class. Denote the probabilit y densities of these random

variables by p1 (X) and p2 (X). Let M1, M2, 
~~ 

and be the
means and covariance matrices for these densities. Althoug h

we may indeed not know the form of the densities p1 (X) and
p,(X), we may estimate (or know) the first and second moments
listed above as well as various hig her momen ts.

For many practical problems this is the case.

A coll ecti on of samp le X’s of clas s 
~l 

and sample X’s of class

~~~, are used to estimate the densities p1(X), p2(X) and the
moments. However small sample sizes (<2 d) prevent us from
accurately estimating these densities. But moments of the
form x? x~ may be reliabl y estimated from samples of sizes 

1
0

which are not exponential in d. Hence inmany actual situations ,
where d is only moderatel y l a rge  (d > 1 2) ,  the only reliable

information about the classes and consists of lower order

moments. Using this information how do we best discriminate

between and This is exactly the mathematical problem

we shall consider.

If we observe a certain vector X , how do we decide with

which class it is most likel y associated? One method is the

Gaussian discriminant defined as follows: Assi gn an observed

test vector , X , to class 1 or 2 according to the magnitude

of the following expression -

1
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( \ M ) t ~~~~~~~~~ (X-M 7) - ~ (X ~ M 1 ) t 
~~~

1 ( X M )  + *3 in  - ~ in I
t class I

t class 2

where the threshold

t = i n  P ( w ~~) — in P(u ,)

I f  p 1 (X) and p,(X) are normal densities this is equivalent

t o  choosing class 1 if ~ l > ~~~ and class 2 other~’ise.p,(X) ‘~~~2~

Clearl y this procedure is optimal (minimizes the probability

of e r r o r )  in the normal case ,

Let us c a l l  the above discrimina nt fun~~ ion  G ( X )  . A l t h o u g h
( ‘ uri v be the opt  im a 1 d I sc rim i n a n t  func t ion on lv i n t h e  case  that

p 1 and p . ire indeed normal , it ma y  he a good a p p r o x  im a t ion to

an opt m a  1 disc r i m  i n a n t  in other cases . We sha II II 1.5 t pi~ove

a result in  this direction and then show how to a d j u s t  the 
F

c o n s t a n t  term of t h e  dis c rim ina n t G (X) to y ield m i n i m u m  p r o b —
ab ii i  t of error usin g t h i r d  an( 1 l o u  r t h  m o m e n t s .  We then
g i ye in in ima 1 va r  l a n c e  (1) solut i on s  to the problem of finding
t h e  op t  ima I quadra t Ic di scr im i nant funct ion. These so! U t  1 0 115

are  o t m in i inum error i n  sevcra 1 a s v m p t o t  i c cases. A ga in the
ii ~~ t f o u r  moments are used .  Fin a l ! v gene ra  I i i i  se r I m i m i n t
fu n c t i o n s  are  der i ved u s i n g  m a r g ina l d i s t r i bu t i ons ~~ mo m e n t s
of  the form x ’~ x . Upper  bounds  on t h e  p r o b a b  ii I t of e r r o r  of
t he se d i sc ~ [Ill i mints ~i re g I VC11 i n  a s v m p t  ot i c cases us i ng the

-

(I) I h e s e  s o l u t i o n s , i n t r o d u c e d  i n  sect i on  III , a r e  so
named since they i u v o  1 y e  t h e  m i n i m  i z at  ion  of c e r t a i n  w e i g h t  —

ed sums of the v a r i a n c e s  of a d i s c r  im i n a n t  ftinct ion u n d e r
eac h h y p o t h e s  i s .

• 1

- 
-

—~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~



centra l limit theorem for finitely dependent random vari ables
(see E~I )
I I .  TH E GAI .JSSL\ N 1)ISCRIMINANT

Theoi .~ m 1 ~~~ L~ (
~

) 
~d 

G(X )p 1 (X)dX 
‘
~ 

(I

> f  G(X)p , (X)dX = F (c1)-
Proof: Suppose Y = A X is a non—singular 1 iiiea r m a p p i n g .

For a probabilit y deiis it~ ~ we have = A and

= A ~ \t where  and a re  the mean and

covar  ian ce  matrix for the transformed densit y

~ ( Y ) =  I A 1 c (A 11). As on pa g e  34 of (11 l e t  us deter-

mine A such t ha t

= A A t 

~~~~~ 

=

( x .
= ~~~~~~~ A t =( 

~~ =
~ 0\ /

where i denotes p..

This result :as stated without p r o o f  in [2~ for  t he un i-
Va r i a t e  c a se .

3
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Now E~ (G(X)) = E-. (G(x(Y))) =

E~ [i(\.~~~ )
t
A

-l ( Y M )  - ~ (Y~M1)
t (Y~M1) +

ln I A ~~~2 A t
i - 4 ln I A ~~1A t

f]

1 d 1(v i 41~i) 2
= F —  

~~

- - ( y .  - + ln

= 4 
~ ~~E ~~~~~~~~ 

+ (M 11 -M 3~ ) ]2 - 1 + lnX~
]

+ ~~
- (M ~~ -M ~ ..) - 1 + in > 0

~~l [i  i J —

since 0 < A .  ( 
~ and z-1 > ln z for all > 0.

1 —

Similarl y F IQ(X)1 = F — E Q ( x ( Y ) ) J

= E~ [‘i
-M
~~~~

+ (M~ .~ MI.)]
2 

+

= 4 - A~ 
- (M~~~_ M

11) 2 
+ l i-i

~~ + in A.) ~ 0

This completes the proof of the theorem .

4 0
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F rom th e above F (((X) ) - 1 (C(X) ) =p 1 P2

1 d 1  2 1 1 1
~~ (M~~. -M 1~~’) (1+~- )  + - + ‘

~~

. - .. w h i c h is the

~I i v e r ~ cnce when p 1 and p ,  a r e  norma l dens  it i es . This q u a n t  it s’

I s  a Iwavs p O S it i ye when the fi i’s t two m ome n t s  of  ( X  I 
~ 1 ~ and

( X ~~~~ ) a re not identical. This fol lows sinc e ~
- + 2 for

a l l  . 0 , ~ 1.

We now discuss the adju stment of the constant term in

G ( X )  . This  is  equivalent to finding c which minimizes the

e r r o r  of the decision rule G — c t - I’his error funct ion

may he written

E (c) = P ( L ~~) dp , + P ( L ~1 ) dp 1

(-c ~~t

I f p 1 and p , are norma l dens i t i es , t h e n c= 0 1 s opt i m a I .

the general case consider the grap hs of I’k 1 ~ and ~)(~~J~ ,

w h e r e  ‘, and  
~ 2 are the ~Iens it v func t io n s o f t h e  r a n do m

v ariabl es G (X/u~~) and G (X/w,) respect ive lv.

S
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L(c) will then be the area of the shaded region . This is minimum

for c = a-t where a is a solution of the equation P(~ 2)y 2 ( a )  =
P( ~ 1)y1 ( a ) . Again in the normal case a=t by the optimality

o f the dec ision rul e G t . This  is however not a lways  true

in the general case as will be demonstrated below .

We now estimate a. Since both G(X/~o1) and G ( X / w2 ) can

be ex p r ess ed as sums of  d rand om v a r i a b l e s , the cen tral

limit theorem implies in many cases that 
~l 

and 
~2 

approach

normal densities for large d. This occurs for instance

when the y~ in the proof of the above theorem are independent

und er the hypo the ses 
~l 

and We then es tima te a by a

solu tion of

0 [a - E(G(x,~1))]
2 

- [a 
- E(G (x/~2))] 

2 
+ 

(P(~ 1) JVar(G Vw2fl~
2 Var ( G ( X / w1 ) )  2 Var (G(X/~2)) \P(~2) 4Var(G (X/~ 1)))

The calculations are as follows:

E (G(X/o~1)) = + ~~~
_-

(M1~~~~-M ~~~~~~)
2 

- I + in A~)

E(G (X/o~2 )) = - (M~~-M1~)
2 

+ in

I1 d/ (Y . M~~. ) 2 
i -‘ 2\12

Var (G (X#iw 1)) = E — 1 
- ~~— + I - r_ (Mjj M

~j
)
~~

(y. Mj.) )j

6
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E~ 
[
~~~((Y~~M11)(~~ 

- 1) + 
_ _ _ _ _ _ _ _ _ _ _ _ _

= E- 

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ (~—- 1) (1 1) - 2 (y~ -M~~ )
2 

~x~
— -’~ 

(~— - l )

4(Y j M jj)
2
(MjJ j

) ( ~~~ 1 ) ( Y
; Mij ) 0 _

i
+4(y . -M 1 .)(y . -M 1 .)(M1 .-M ~ .)(M1 .-M~~.)~

A .X.
1 3

= 

~~~~~~ ~ 

(
~~

- l ) (
~~-

-l) E~

d
+ 

i ,~ =l 
X~ 

A~ 
- 

E~ [(Yi~MI1 )-(Y~~MIp]

+ ~~ (M j . -M , . )
i=1

1

d /(y~ -M~ 1)
4 

2 
2

V ar I.~
G(X /oi 2 ),~ 

= E~
2 [

~
- 
~ ~ 

- ~~~~~~~~~~~~~~~~~~~~~

= E~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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- E~ ~~~~~~~~~~~~~~~~~~~~~~~~ i ) (~~ - 1)  +

( i - A 1) ( l _ A ~ )

-2 ~~~ 
-M~~1) 2~~l 1) (l_A ~ )

+4 (y~ -M~ 1 ) (~~ -M-~3
) (M~~ -M 11 ) (M~~~M 1~ )

— 

~
-i 1  

(
~ - - -1 ) t ~~- I )  F~ ~~~~~~~~~~~~~~~~~~ -A 1 A

j]

i ,~ = l  ~~~~~~~~~~~~~~ ~~~ 
[(Y~

-M
~~~

2 (Y
J

-M
~J )]

+ 

~~

The above third and f o u r t h  moment s  may he e a s i l y  e s t i ma t e d

from sample data b y us ing  the  t r a n s f o r m a t  i i ~n A of the theor em.

Ih e  solution we then choose for a is that solution for which

i s  i n c r e a s i n g  more r a p i d l y t h a n  P (w , ) y , ,  i . e . ,  fo r  w h i c h

) ) — a  f l ( G ( X /~i ) ) ) — a
V~i~~( G ( X / ~~1 ))  .

~~
- Vir ~~~~ 7~~,) ) .

I I  I . TI IF MI  N 1MM. VAR IA N CF S01A1 l’ I O N

D c f . 1: Let  I) be a c l a s s  of p r o b a b i l i t y  de n s i t  i e s  p (m , v )

on t h e  rea l I i  me parametrized c o n t i n u o u s l y  by t h e i r  means  m

and v a r i a n c e s  v (m c R , v c V c R) .  I) i s  c a l l e d  t r a n s l a t i o n a l  i f

I n add i t  i O U

, v )  ( x )  = p ( m 2 1 v)  (x + m 2 -m 1) for  all rea l  x .

8
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l)cf. 2: Let I) he a translational family. Then I) is said t o

he of monotone error if in addition to the above the following

is satisfied : For each 0 < ~~ < 1 and any  two members of I),

p (O,v ) and p ( [  , v 2 ) , the func t ion1 
( ( C

ha 
(v

1 ,v 1) = i n in ~ J 
(1 — c z ) p  (1 ,v 2 )dx + J a p (0 ,v 1 

) dx
C -m c

i s  differentiable in v1 and v , and

+ 0 fo r  a l l  v 1, v , c V.V 2 V
1

O Theorem 2 Let v 1 
(
~

) , v 2 (
~ ) he d i  f f e r e n t  i a h l  e mappings from

some parameter space AcR ’3 into the varianc e space V of a

m o n o t o n e  e r ro r  f a m i l y  I) . I f  a ’ is a loLal extremum of the

function 1~~ (v~~(~~) ,v ,(~~)) then ~~ ‘ is a local extremum of

+ ( i - ~~) v 2 ( ~~) for some -1 <  ~ < 1.

proof: Let ~~ ‘ he a loca l ex t r emum of l~~(v1(~ ),v 2 (~~)).

‘ihen Vii (v
1(~~’),v 2(~~’) )  =

(
~~~~

E 

~\ Vv 1 (~~’) ~(~~a ~\ Vv ,(~~’) 0

Th en f or some ~~, -l<~ <l , V (~ v 1 
+ ( l - I ~~I ) v 2) 0 at

~~~
‘ . I f  U~ (v 11 v ,) is concave at v 1 (~ ‘)  , v 2 ( a ’) a nd

I t can he shown that ~ ‘ i s a I o ca I in i n  i mum o F

~v 1 + ( l -~~)v 2 .

Hence to minimize F
a 

(v
1 (~~) , v , (~ ) ) we need o u l  v coi t s  i dci’

fun c t ions of the fo rm ~v 1 (~~) + ( I  —K)v , (a) For v a r  i OilS  v a l u e s

of  ~ . Thes e ma~’ he muc ii eas Ic t’ to hand Ic nume r I ca II . We

9
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now apply these results to optimal discrimination. Suppose

we consider a certain class  of d i sc r iminan t  funct ions  L ( a ) .

We may further res t r ic t  th i s  c lass  in such a way that

E ( L ( ~~) / w 2 ) - E ( L (~ )/o 1) 
= 1. I f  the or iginal  parameter

space A is rich enough to include the Gauss ian d i s c r im inan t

and is homogeneous and t rans la t ion  invariant  t h i s  may be

eas i ly  achieved provided that the f i r s t  and second moments

are not identical  under both hypotheses (see Theorem 1 ) .  I f

for the resul t ing set of the parameters the d i s t r i b u t i o n

func tions of (L/~ 1) and of (L/ w2) behav e (asymp tot i c a l l y )

as those of some family D of monotone error , we may determine

that discr iminan t which (asymp tot i c a l l y)  min im izes

.~ (L/ m 1,L/~ 2) by cons ider ing  the ex t rema of
(U3 iJ

~ Var ( L ( )/ co 1) + ( l4~ ) Var (L (a ) / co 2 ) for various values  of

~~, - 1 <  ~ < l , and either a) choosing that extremum which g ives

minimum error as ca lcula ted  from knowledge of the f a m i l y  D

or b) when D is not known , choosing that extremum for which

the dis cr iminan t performs bes t on sample da ta.
One may at this point ask why we do not simply choose L(i )

wh ich bes t separa tes the samp le data. The reas on in many

pract ical  s i tua t ions  is again that sample sizes are not ex-

ponen ti a l in d. I f  the parame ter space A has dimen si on gr ea t er

than or equal to d-l (as is the case for the class of tine ar

10
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di scriminants) , it is highly likely that the “small” samples

w i l l  he w e l l  s epa ra t ed  by some L( ~~) .  h owever t h i s  L( ~~) w i l l

not  n e c e s s a r i l y  pe r fo rm w e l l  on new da ta  s i nce  the i s  not

r e l i a b l y -  e s t i m a t e d .  Our procedure y i e ld s  a one parameter

family of discri m inants determined from the ( r e l i a b l y  e s t i m a t e d )

moments .  The sample s i z e  need not he e x p o n e n t i a l  in d to

r e l i a b l y  e s t i m a t e  the  ( s i n g l e )  p a rame te r  ~ .
In t h e  f o l l o w i n g  s ec t i ons  we w i l l  desc r ibe  several ap-

p l i c a t i o n s  of the above procedures  and i n d i c a t e  w h i c h  l i m i t

theorems in P r o b a b i l i t y  guarantee the exis tence  of the

monotone error f a m i l i e s  P .  Even i f  such l i m i t  theorems do

not appl y the procedure h) is indeed a second order s o l u t i o n

to the problem of f i nd i ng  the opt im al  d i  scrim i nant L(~~) , in

that an approximate solut ion i s  lct -  iv ed  in t e rms  of t h e  means

and v a r i a n c e s  of  L (~~) ti nder  and ui , .  We c a l l  t h i s  m e t h o d

t h e  m i n i m a l  v a r i a n c e  s o l u t i o n .
I V .  h u E  QL 1A F)I~AT I C  U! SCR I M l  NANT FI JN C’l’ 1 ON

l~v an a f f i n c  t r a n s f o r m a t i o n  we ma y  a s s u m e  t h a t

x 1, x ~~, - . - X d are u n c o r r e l a t e d  under  bo th  h y p o t h e s e s  and

• f u r t h e r  t h a t :

0; E (x./~~,) =

V a r ( x . / ~~1) = A~~; Var (x ./w ,)

I I  

~~~O——
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Le t Q(X) E a.. x.x. +~~ b .x.. In many ca ses Q is norma l
< 

1J  i i  1 1

or (x, n) fo~ lar ge d. The c lass of normal s and the c lass

of (x ~n)  are classes  which  are char act er ized by the i r  ~nean s

and variances. It is easy to see that such classes are of

mono ton e error .  Ilenc e the fo l lowing  m i n i m a l  va r iance  solu t ion

may indeed be (a sym ptot ic a l ly )  op t ima l :

E (Q/w 1) 
=

E (Q/ u ) = E  a.. + ~~a..(l+A~) +~~b .
1 <3  ~J 11 1 1

We wan t to f ind  ex trema of ~ Var(Q / c~1) 
+ (l-l~) Var(Q/c~2) sub-

ject to ~~ a1~ 
+~~ b. +~~ a.. (l+A~

2-A~ ) = 1. Using a Lagrange

m u l t i p l i e r  ~~, we d e t e r m i n e  ex t rema  of

~~~~~~~~ a.
3
x .x. + ~ a. 1 (x 2 

- A~~) + 
~~ b~

x
~ )

2

+(l-~()E 2 ~~~~~~~~~~~~~~ 
+~~~ a ..(x~ - 1-A ~ ) +~~~~ b~~(x . - l ) )

- 
~~ 

~~~~ 

a.~ + 
~~ 

b~ + ~ a~~ (1+A~ -A~) 
- 1)

D i f f er en t ia t ing wi th respec t to 
~~ 

and b~ and setting equal

to zero we obtain:

~ 
t~ k~~~° 

[$El (x txkx lxJ
) + (l-H) Ez (x

~
xkx jx j -1)

+ 2Eb~ [6E1 x~x~xp + (l_
~ )E 2 (x Lx ixj -1)

+ 2~~~a~~ [~ii 1 (x~x~x~ ) + (1_ l
~ )E z (x~ x i x j

_ l _ A
~~)] 

0

= for  i < j

12
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~ k
a tk [~

Ii
l

x
~
x
k
x
~~ 

+ (l-I 8
~
)E2 (x Qxkxi_

l _ A
~ )]

+ 2 ~~h Q [~
E1

x~ x~~ + ( 1 )ii 2 (x~ x~ - l - X ~ )]

+ ~ ~~ ~~~ ~~~~~~~~~~~ A ’) +

= ( l + A i - X ~~) ~

and

2 
~~~~~~ 

[~
1i

l
x
~
x
k
x
i 

+ ( l -
~~

) i i ) ( x ~ x k x . -1)]

+ 2
~~

a
~~ [~

n 1 (x~ x~ ) 
+ (l-1~I)E ,(x~ x . - l -A ~ )]

+ 2 b~ + (l-J8j) 

~
] =

i n ma t r i x  form M = 
~~ yields ~~ 

= 
~ M~~ ~t 

= 
~~ ~~~. From the

constr aint ~ = ( ~ c. . +~~~c. +~~~c. .a+A ~ -xh ~l ) l
13  1 1 1  1 1

where  c~~1~ ~~~ 
and 

~~~ 
are the components of ~ c o r r e s p o n d i n g

to a. - , h . • and a . .  of ~ .I i  1 11
Un f o r t u n a t e l y  the  above so flit ion r equ i res an m ye rs  ion

of  a d + 3d x ~~~ 3(1 m a t r i x  fo r  each v a l u e  of ~ . A l s o  t h e

asvmptot ic class may he unknown. The p r i n c i p a l axes  1 i s —

c r im inant P ~ a x ~
‘ +

~~~ h~ x has  the advantages of being

more nume r i ca  l i v  fea s ib 1 e (ol equa t i ons  in  d unknowns ) and

b e h a v i ng n o r m a l l y  ( l a r g e  ~I , independent x~ ) in man y cases  .

I t s  minima l variance solut ion i s  as fol lows:

2 ~ ht [~
E 1 (x~ xj) + ( 1- I ~b E 7 ( x Q x i  - l - A ~~)]

+ 2 .i
~~ [~I~1 (x~ x~ -~4 A 1 ) + (I-) 1~,(x~~x~ 

- (1+\~~)il~~\~~fl~

= t l +\ -\~~) 4’

13
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.2 ~~~~ [~E 1 (x~ x i)  + (l-f~L)hi 2 (x~ x . - l -A ~ )]

+ 
~~~~~~ . 

+ (1~~~I)A
] 4’

The above sv stem can  he reduced to d equat ions in  the d un —

kn0~ us a and t h e n  s o l v e d  f o r  each v a l u e  of ~ - ‘lhe sol tit ion

, t) for the constrained system is then o b t a i n e d  in a

straight forward m a n n e r .  Normal tables may he used to 
0

est im a t e the error for each ~ .

V - (;u~NI~~Al, 1)1 SCR l M l  N A N I ’  F ( INCT I ON S

We ma x- use the procedure in III to d e t e r m i n e  h i g her

order di scr iminan ts. ilow eve r t h i s  may be n u m e r i c a l l y  im-

p r a c t  i c a  I even  fo r  discrimin ants of mod erate order. Also

f o r  I a r~ e d i m e n s  ions  d and re 1 at i ye lv small ( <d’s) sample

‘~ i es o n l y  m a  rg i na I d e n s i t i e s  and their corre 1 at ions may be

re 1 1 3  h I  v es t i m a t e d  - I le nc e we propose a met  hod wh i c h depends

o m i t  v on m a r g  i na I d i sc r hit i n a n t  s and their correlations . In

i~o a s v i n p t  ot  i c s I t u a t  ions upper hounds on t h e  er r o r  r i te

ar e  obt a i ned
le t us as sume that x x 2 - • a rc  tin i f o r m  Iv ho un ded

b u t  relax an~ other prey  ious  a s sum p t  ion. ( However i n many r

p r a c t  ic al cases ‘‘ u n c o r r e l a t  in g ’’ the x 1 may increase t h e

ap p !  i c ab  i l l  tv of a l i m i t  t h e o r e m . )  l e t  f 1 (x 1 ) be a d i  s —

c r  m i i  n a n  t fu n c  t I on f o r  the  o n e — d  imens i ona I random v a r i a b l e

14
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x 1 . For s i mp l i c i t y ~~
2
~ let us assume that , for all  dis-

cr iminants  f~~(x~~) henceforth considered , E ( f ~ /w~~) j~ E ( f ~ /c~2 ) .

One choice of is (an estimate of) the log-likelihood

ra t io o f the m a rginal  densi t ies of x 1 , in p~ (x.) - ln p~ (x~).

a Consider the discriminant function
d

D ( X )  = ~~ a~
f
~

(x 1)1
To ob tain the minimal variance solution we find extrema of

8E 1 (~~ a~ f1 (x 1) 
- ~~ a.E1 (f.(x.)))

2

+ (l-J~I)E 2 (~~ 
a .f .(x.) -

~~~~~~ a.E 2 (f 1 (x~ ) ) ) 2

I 

- 4’ (~~~ 
a .E 2 (f.(x.)) 

-
~~~~~~ a .E 1 (f.(x.))

These are g iven by -

+ -1-~a 4 ’ M  b = 4 ’ c

where

b
~ 

= E2 (f 1) - E 1(f ~ )

= 2~ E 1 [ f . f .  - E 1( f . ) E 1( f .) ]

+ 2(1-r~t)E 2 1~i~1- E 2 (f 1)E 2 (f ~ )]

and 4’ =(
~ 

c i (E 2 (f j ) - E i (f j )))

The following definition is adapted from [3].

Def. 3: An infinit e sequence of random variables x . is

said to be f in i tely dependen t if for every nonemp ty f i n i te

(2)  This is hardly a res tric t ion since in prac t ical cases
es timates of the expectations men tioned will rarely be
the same.

15
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subset of the variables A there exists another finite sub-

set B(A) (including A) such that {x~ c A) is independent of

Cx . c B”) and SUI) 
IB(A ) L < where denotes the cardinaljtv

~A I

of a set.

I f  our sequenc e x 1, x ,, - . . is finitely dependent then

it follows that the sequence (f 1 (x~ )) is a lso  f i n i tel y depen-

dent. 13>’ the results of ~3) the discriminant function
d

l)(X) = 

~ 
a
~~
f
~~
(x
~~

) w i l l  be no rma l ly  dis tr ibu ted for  lar ge d

provided that the at ’s bec ome s u f f i c i e n tl y smal1~~~ as d

becomes large. This has the following useful consequence.

Theorem 3: Let x1 , x ,, ... be finitely dependent and suppose

f~ (x 1
) is the log-likelihood ratio. Suppose further that

x. , . . . are independent. If for large d the minimal

variance solution D(X) has coefficients which sat isfv the

above “smallness ” conditions , then the probabilit y of error

using 11(X) will become hounded above by the Bayes error for

the sequence x~~~, x~~~, . . X i k ~
m k < d < ik+l ).

outline of pr oof: the optimal di scrimi nant function f’~r

x. , x. , .. . x .  is  ~ (X )  = 
~ 1. (x. ) .

1 2 k I ‘.~ ~~~ 
‘

As d becomes large k becomes large and the above

coefficie nts (
~~) will satisf y the “smallness ”

( 3 ) T h e  exac t  c o n d i t i o n s  on t he a in terms of the v a r i a n c e s
0 

of the fj (xj) can he determined prom C o r o l l a r y  4 . 2  on page
232 of [3J

— 0~~~~ ~~-0 —— - _._ — —-•- - -_ -~— - —~~ -~~~-0
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c o n d i t i o n .  Since  the min ima l  va r i ance  s o l u t i o n

is uni que it will have min imum error among all

those dis criminant s whose coefficients satisfy

the “smallness ” condition (since this is a

connected set in the coefficient space).
in  many practical situatioi~s the marg inal densities are

not available. We introduce a method of minima l marginal

moment variance. (in. m n . m .  v. ) Let x be a one-dimensiona l random

v a r i a b l e .  Suppose  >‘ 1 2 - . is independent and ident i —

c al l y  d i s t r i b u t e d  (i. i.d. ) with the same distribution as L

x under both hypotheses . Consider a pol ynomial discri m inant

functi on P~ (Y) =
~~~~ ~~a. .~~~~ . The minimal variance solution
i i ’3’ d O  -

w i l l  be of the form P~~(Y) 4~ ~~~~~~ where ~~~~. are extrema
Q - ‘ l l Q ~~~

’ -

o~ 8 Var ( ~~ ~i x 3 /~ 1) + (1-u) Var (~~ 
i.x 3 /w~)

Q . 
I

- 4’ (E)(~~ ii’.x 3 ) - E 1(~~~i.x
3) —1 ).

1 ~ 1 -~

Differentiating y i e l d s  -

2 ~~ [ 8 E 1 ( x ~~~
i - x~ E 1(x~~) )  +

= 4’ (E 2 ( x 3 ) -

Us i ng normal  tables  t he ~orrect ~ is d e t e r m i n e d  and the

corresponding ~~ calculated from the variances of P Q .

Def. 4: The m . r n . m . v .  d i s c r i m i n a n t  function of x of degree (d,Q)

is given by ?~(x) =
~~~~ ~ .x 3 where  the ~i are the above
1 ~ •1

minimal variance coefficients.

J 0
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‘l’heorem 4: Let x 1, x -, , . . .  he f i n i t e ly  dependent  -and sii t~pose

f. l,x.) is the m.m.m.v. discriminant function of x~ of degree (k,Q).

Suppose further that x~ , x~ , . . .  are i .i.d. If for
1 2

large d and large Q t he  m i n i m a l  v a r i a n c e  s o l u t i o n  D ( X )

has coefficients which satisfy the previous “smallness ”

co n d i t i o n s , then  the  p r o b a b i l i t y  of er ror  using D ( X )  w i l l

become bounded above by the Bayes error  for  the  sequence

X , X . ,  - . X~~ 

~~~ 
< d < ik+l L

outline of proof: the optimal discriminant function
k

x .  , x .  , . . . , x .  is  ~ ( X )  = 
~~ ~. ( x .  )

‘1 12 ‘k 1

where  t ( x .  ) is the  log l i k e l i h o o d  r a t i o .  Since
‘

S

for  l a rge  Q this may be w e l l  a p p r o x i m a t e d  by
k Q  -

11 (X) = ~ ~~

‘
. x-~ where ~~~. are determined by

Q 1 1 ~ 
i s

fitting ~~x~~ ) to a polynomial of degree Q. But

for large k the minimal varianc e solution for

~~~ x . ,  . . .  is M (X) = X~~~ 
= ~~ rQ (\. ) .

I t wi l l  sa t i s fy the smal lnes s cond i ti on and it s

error  w i l l  appro ach that o f D
Q 

which in turn

approaches tha t of ~~. Hence the error of M

approaches  the  Bayes er ro r  of x~ x .  , . . - x . .
1 1 2

By ar gum en t s s i m i l a r  to the proof o f The or em 3 ,

the  er ror  of D ( X )  w i l l  become bounded by t h e

Bayes e r ror  of x .  , x .  , ~~. .  , x .  -
1 2 

‘k

is

- -— ~~~~ - - -~~ - -— -•~~~ —~~~ ~~~~~~~~~~~~~~~
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We conclude from these theorems that , even if we do no t

know which subsequence x . , x .  , . . .  of the p rocess x 1, x , - .
‘1 ‘2 2

is an independent sequence , we may d iscr imina te the f i n i tely

dependent process (asymptotically) as well as we could dis-

c r i m in a t e  x .  , x .  , - .. if the Ci .) were known .
‘1 ‘2

19
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